Content Citations

---- Lesson 1 ----


[1] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. Nicolelis, “Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex,” Nature Neuroscience, vol. 2, no. 7, pp. 664–670, 1999. 

[2] Home. [Online]. Available: https://humanfusions.org/. 

[3] “Human Connectome Project,” . [Online]. Available: http://www.humanconnectomeproject.org/.

[4] “Connectome Programs,” National Institutes of Health. [Online]. Available: https://neuroscienceblueprint.nih.gov/human-connectome/connectome-programs. 

[5] M. Day, M. C. Boardman, and N. F. Krueger, Handbook of research methodologies and design in neuroentrepreneurship. Cheltenham, UK: Edward Elgar Publishing, 2017. 

[6] C. Cinel, D. Valeriani, and R. Poli, “Neurotechnologies for Human Cognitive Augmentation: Current State of the Art and Future Prospects,” Frontiers in Human Neuroscience, vol. 13, 2019. 

[7] S. Fecteau, D. Knoch, F. Fregni, N. Sultani, P. Boggio, and A. Pascual-Leone, “Diminishing Risk-Taking Behavior by Modulating Activity in the Prefrontal Cortex: A Direct Current Stimulation Study,” Journal of Neuroscience, vol. 27, no. 46, pp. 12500–12505, 2007. 

[8] I. Heth and M. Lavidor, “Improved reading measures in adults with dyslexia following transcranial direct current stimulation treatment,” Neuropsychologia, vol. 70, pp. 107–113, 2015. 

[9] A. R. Brunoni and M.-A. Vanderhasselt, “Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis,” Brain and Cognition, vol. 86, pp. 1–9, 2014. 

[10] B. Burle, L. Spieser, C. Roger, L. Casini, T. Hasbroucq, and F. Vidal, “Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view,” International Journal of Psychophysiology, vol. 97, no. 3, pp. 210–220, 2015. 

[11] M. Serrels, “Scientists connect 3 actual human brains (then make them play Tetris),” CNET, 08-Oct-2018. [Online]. Available: https://www.cnet.com/news/scientists-connected-3-actual-human-brains-then-made-them-play-tetris/.



---- Lesson 2 ----


[12] E. Engelhardt, “Cerebral localization of the mind and higher functions The beginnings,” Dementia & Neuropsychologia, vol. 12, no. 3, pp. 321–325, 2018.

[13] M. A. Faria, “Neolithic trepanation decoded- A unifying hypothesis: Has the mystery as to why primitive surgeons performed cranial surgery been solved?,” Surgical Neurology International, vol. 6, no. 1, p. 72, 2015.

[14] M. C. Lillie, “Cranial surgery dates back to Mesolithic,” Nature, vol. 391, no. 6670, pp. 854–854, 1998.

[15] É. Crubézy, J. Bruzek, J. Guilaine, E. Cunha, D. Rougé, and J. Jelinek, “The antiquity of cranial surgery in Europe and in the Mediterranean basin,” Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science, vol. 332, no. 6, pp. 417–423, 2001.

[16] K. PP and P. KP, “The Ancient Greek Discovery of the Nervous System: Alcmaeon, Praxagoras and Herophilus,” Journal of Neurology and Neuroscience, vol. 06, no. s1, 2015.

[17], Untitled Document. [Online]. Available: https://web.stanford.edu/class/history13/earlysciencelab/body/brainpages/brain.html.

[18], 13. Radio During World War One (1914-1919). [Online]. Available: https://earlyradiohistory.us/sec013.htm.

[19] T. C. Nguyen, “Who Invented Bluetooth?,” ThoughtCo. [Online]. Available: https://www.thoughtco.com/who-invented-bluetooth-4038864.

[20] P. M. Lewis and J. V. Rosenfeld, “Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective,” Brain Research, vol. 1630, pp. 208–224, 2016.

[21] T. C. Nguyen, “Who Invented the Computer?,” ThoughtCo. [Online]. Available: https://www.thoughtco.com/history-of-computers-4082769.

[22] R. C. Koch, “Transistor radio apparatus,” 30-Jun-1959.

[23] A. Mudry and M. Mills, “The Early History of the Cochlear Implant,” JAMA Otolaryngology–Head & Neck Surgery, vol. 139, no. 5, p. 446, 2013.

[24] P. M. Lewis and J. V. Rosenfeld, “Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective,” Brain Research, vol. 1630, pp. 208–224, 2016.

[25] R. A. Andersen, “Vernon B. Mountcastle (1918–2015),” Current Biology, vol. 25, no. 8, 2015.

[26], “David Hunter Hubel,” Encyclopædia Britannica. [Online]. Available: https://www.britannica.com/biography/David-Hunter-Hubel.

[27], NIHF Inductee Robert Kahn Invented Internet Protocol. [Online]. Available: https://www.invent.org/inductees/robert-e-kahn. [Accessed: 18-Jun-2021].

[28] D. S. Soane, “Methods for fabricating enclosed microchannel structures.”

[29] A. Y. Chervonenkis, “Early History of Support Vector Machines,” Empirical Inference, pp. 13–20, 2013.

[30] B. Macukow, “Neural Networks – State of Art, Brief History, Basic Models and Architecture,” Computer Information Systems and Industrial Management, pp. 3–14, 2016.

[31] P. Nesargikar, B. Spiller, and R. Chavez, “The complement system: History, pathways, cascade and inhibitors,” European Journal of Microbiology and Immunology, vol. 2, no. 2, pp. 103–111, 2012.

[32] C. Ning, L. Zhou, and G. Tan, “Fourth-generation biomedical materials,” Materials Today, vol. 19, no. 1, pp. 2–3, 2016.

[33] O. of the Commissioner, “FDA History,” U.S. Food and Drug Administration. [Online]. Available: https://www.fda.gov/about-fda/fda-history.

[34], “Nuremberg Code - history - Office of NIH History and Stetten Museum,” National Institutes of Health. [Online]. Available: https://history.nih.gov/display/history/Nuremberg+Code.

[35], World Health Organization. [Online]. Available: https://www.who.int/home/cms-decommissioning.

[36] O. for H. R. Protections, “The Belmont Report,” HHS.gov, 15-Mar-2016. [Online]. Available: https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/index.html.

[37], “Hacker dies days before he was to reveal how to remotely kill pacemaker patients,” RT International. [Online]. Available: https://www.rt.com/usa/hacker-pacemaker-barnaby-jack-639/.

[38] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, and W. H. Maisel, “Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses,” 2008 IEEE Symposium on Security and Privacy (sp 2008), 2008.

[39], “Medical Device Cybersecurity: FDA & the Community.” [Online]. Available: https://cybermedrxdotcom.files.wordpress.com/2016/01/fda_cdrhcybersecurity_cybermedrxsummit_12-4-15_final.pdf.

[40] Center for Devices and Radiological Health, “Implanted Brain-Computer Interface (BCI) Devices Considerations,” U.S. Food and Drug Administration. [Online]. Available: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/implanted-brain-computer-interface-bci-devices-patients-paralysis-or-amputation-non-clinical-testing.

[41], “Modeling and Simulation,” U.S. Food and Drug Administration. [Online]. Available: https://www.fda.gov/science-research/about-science-research-fda/how-simulation-can-transform-regulatory-pathways.

[42], Meetings. [Online]. Available: http://www.imdrf.org/meetings/meetings.asp.

[43], “Letter to His Excellency António Guterres,” The White House, 21-Jan-2021. [Online]. Available: https://www.whitehouse.gov/briefing-room/statements-releases/2021/01/20/letter-his-excellency-antonio-guterres/.

[44] T. Tietz, “Luigi Galvani and the Discovery of Bioelectricity,” SciHi Blog, 12-Sep-2020. [Online]. Available: http://scihi.org/luigi-galvani/.

[45] K. Karbowski, “Sixty Years of Clinical Electroencephalography,” European Neurology, vol. 30, no. 3, pp. 170–175, 1990.

[46], sapienlabs.org. [Online]. Available: https://sapienlabs.org/the-remarkable-inconsistency-of-frequency-band-definitions/.

[47] J. J. Newson and T. C. Thiagarajan, “EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies,” Frontiers in Human Neuroscience, vol. 12, 2019.

[48], sapienlabs.org. [Online]. Available: https://sapienlabs.org/brain-waves-sine-waves/.

[49] N. Baker, “History of IONM,” SpecialtyCare, 23-Aug-2019. [Online]. Available: https://specialtycareus.com/history-of-ionm/.

[50] S. F. Oliveria, “The dark history of early deep brain stimulation,” The Lancet Neurology, vol. 17, no. 9, p. 748, 2018.

[51] B. Ghane-Motlagh and M. Sawan, “A review of Microelectrode Array technologies: Design and implementation challenges,” 2013 2nd International Conference on Advances in Biomedical Engineering, 2013.

[52] G. M. Shepherd, Creating modern neuroscience: the revolutionary 1950s. Oxford: Oxford University Press, 2010.

[53] E. M. Schmidt, M. J. Bak, F. T. Hambrecht, C. V. Kufta, D. K. O'Rourke, and P. Vallabhanath, “Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation of the visual cortex,” Brain, vol. 119, no. 2, pp. 507–522, 1996.

[54] J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O'Doherty, D. M. Santucci, D. F. Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. Nicolelis, “Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates,” PLoS Biology, vol. 1, no. 2, 2003.

[55] S. Shankland, “Elon Musk says his Neuralink startup already has a brain-machine interface working in monkeys,” CNET. [Online]. Available: https://www.cnet.com/news/elon-musk-neuralink-works-monkeys-human-test-brain-computer-interface-in-2020/. [Accessed: 18-Jun-2021].

[56], “Brain Initiative,” National Institutes of Health. [Online]. Available: https://braininitiative.nih.gov/.

[57], “The BRAIN Initiative® 2.0: From Cells to Circuits, Toward Cures,” National Institutes of Health. [Online]. Available: https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative%C2%AE-20-cells-circuits-toward-cures.

[58], DARPA RSS. [Online]. Available: https://www.darpa.mil/our-research. 


---- Lesson 4 ----

[59] T. C. Burdett and M. R. Freeman, “Astrocytes eyeball axonal mitochondria,” Science, vol. 345, no. 6195, pp. 385–386, 2014.

[60], [Online]. Available: https://www.toppr.com/ask/content/story/amp/types-of-neurons-on-the-basis-of-no-of-processes-70522/.

[61] P. W. Team, “Nernst Equilibrium Potential - Resting Membrane Potential,” PhysiologyWeb. [Online]. Available: https://www.physiologyweb.com/lecture_notes/resting_membrane_potential/resting_membrane_potential_nernst_equilibrium_potential.html.

[62] E. Engl and D. Attwell, “Non-signalling energy use in the brain,” The Journal of Physiology, vol. 593, no. 16, pp. 3417–3429, 2015.

[63] Action Potential in the Neuron. YouTube, 2018.

[64], https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Gap_cell_junction-en.svg/375px-Gap_cell_junction-en.svg.png. .

[65] J. Vasković “Neurotransmitters,” Kenhub, 31-May-2021. [Online]. Available: https://www.kenhub.com/en/library/anatomy/neurotransmitters.

[66] S. Knapp, “Glial Cells - The Definitive Guide,” Biology Dictionary, 15-Oct-2020. [Online]. Available: https://biologydictionary.net/glial-cells/.

[67] Libretexts, “5.3: Preception and Attention- What vs. Where,” Medicine LibreTexts, 14-Aug-2020. [Online]. Available: https://med.libretexts.org/Bookshelves/Pharmacology_and_Neuroscience/Book%3A_Computational_Cognitive_Neuroscience_(O%27Reilly_and_Munakata)/05%3A_Brain_Areas/5.03%3A_Preception_and_Attention-_What_vs._Where.

[68], “Neural Oscillations,” NeurotechEDU. [Online]. Available: http://learn.neurotechedu.com/oscillations/. 


---- Lesson 5 ----


[69] E. Fernández, B. Greger, P. A. House, I. Aranda, C. Botella, J. Albisua, C. Soto-Sánchez, A. Alfaro, and R. A. Normann, “Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects,” Frontiers in Neuroengineering, vol. 7, 2014.

[70] R. Sahyouni, D. T. Chang, O. Moshtaghi, A. Mahmoodi, H. R. Djalilian, and H. W. Lin, “Functional and Histological Effects of Chronic Neural Electrode Implantation,” Laryngoscope Investigative Otolaryngology, vol. 2, no. 2, pp. 80–93, 2017.

[71] X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” Journal of the Peripheral Nervous System, vol. 10, no. 3, pp. 229–258, 2005.

[72], “REGENERATIVE PERIPHERAL NEUROINTERFACING OF UPPER ...” [Online]. Available: https://rc.library.uta.edu/uta-ir/bitstream/handle/10106/1043/umi-uta-2148.pdf?sequence=1&isAllowed=y.

[73] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Computer Vision, Graphics, and Image Processing, vol. 39, no. 3, pp. 355–368, 1987.

[74] S. Ridwan, B. Ostertun, H. Stubbe, and F.-J. Hans, “First Report of Extraspinal Lead Migration Along a Thoracic Spinal Nerve After Spinal Cord Stimulation,” World Neurosurgery, vol. 141, pp. 247–250, 2020.

[75] A. L. Maldonado-Naranjo, L. A. Frizon, N. C. Sabharwal, R. Xiao, O. Hogue, D. A. Lobel, A. G. Machado, and S. J. Nagel, “Rate of Complications Following Spinal Cord Stimulation Paddle Electrode Removal,” Neuromodulation: Technology at the Neural Interface, vol. 21, no. 5, pp. 513–519, 2017.

[76], neuronwbs.com. [Online]. Available: https://neuronwbs.com/spinal-cord-stimulation-paddle-lead/.

[77], [Online]. Available: https://stimwavefreedom.com/freedom-spinal-cord-stimulation/.

[78] B. P. Christie, M. Freeberg, W. D. Memberg, G. J. Pinault, H. A. Hoyen, D. J. Tyler, and R. J. Triolo, “‘Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves,’” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, 2017.

[79] H. Charkhkar, B. P. Christie, G. J. Pinault, D. J. Tyler, and R. J. Triolo, “A translational framework for peripheral nerve stimulating electrodes: Reviewing the journey from concept to clinic,” Journal of Neuroscience Methods, vol. 328, p. 108414, 2019.

[80] J. A. George, D. M. Page, T. S. Davis, C. C. Duncan, D. T. Hutchinson, L. W. Rieth, and G. A. Clark, “Long-term performance of Utah slanted electrode arrays and intramuscular electromyographic leads implanted chronically in human arm nerves and muscles,” Journal of Neural Engineering, vol. 17, no. 5, p. 056042, 2020.

[81] E. H. Rijnbeek, N. Eleveld, and W. Olthuis, “Update on Peripheral Nerve Electrodes for Closed-Loop Neuroprosthetics,” Frontiers in Neuroscience, vol. 12, 2018.

[82] V. Paggi, O. Akouissi, S. Micera, and S. P. Lacour, “Compliant peripheral nerve interfaces,” Journal of Neural Engineering, vol. 18, no. 3, p. 031001, 2021.

[83] C. A. Kubiak, S. W. Kemp, and P. S. Cederna, “Regenerative Peripheral Nerve Interface for Management of Postamputation Neuroma,” JAMA Surgery, vol. 153, no. 7, p. 681, 2018.

[84] C. A. Kubiak, S. W. Kemp, P. S. Cederna, and T. A. Kung, “Prophylactic Regenerative Peripheral Nerve Interfaces to Prevent Postamputation Pain,” Plastic and Reconstructive Surgery, vol. 144, no. 3, 2019.

[85] M. G. Urbanchek, T. A. Kung, C. M. Frost, D. C. Martin, L. M. Larkin, A. Wollstein, and P. S. Cederna, “Development of a Regenerative Peripheral Nerve Interface for Control of a Neuroprosthetic Limb,” BioMed Research International, vol. 2016, pp. 1–8, 2016.

[86] S. R. Svientek, D. C. Ursu, P. S. Cederna, and S. W. Kemp, “Fabrication of the Composite Regenerative Peripheral Nerve Interface (C-RPNI) in the Adult Rat,” Journal of Visualized Experiments, no. 156, 2020.

[87], “Prosthetics,” JHU/APL Brand. [Online]. Available: https://www.jhuapl.edu/Prosthetics/ResearchTMR.

[88], “Targeted Muscle Reinnervation: A Neural Interface for Artificial Limbs,” Shirley Ryan AbilityLab. [Online]. Available: https://www.sralab.org/research/labs/bionic-medicine/projects/targeted-muscle-reinnervation.

[89] S. Elyahoodayan, C. Larson, A. M. Cobo, E. Meng, and D. Song, “Acute in vivo testing of a polymer cuff electrode with integrated microfluidic channels for stimulation, recording, and drug delivery on rat sciatic nerve,” Journal of Neuroscience Methods, vol. 336, p. 108634, 2020.

[90] H. Kim, A. M. Dingle, J. P. Ness, D.-H. Baek, J. Bong, I.-K. Lee, N. O. Shulzhenko, W. Zeng, J. S. Israel, J. A. Pisaniello, A. X. T. Millevolte, D.-W. Park, A. J. Suminski, Y. H. Jung, J. C. Williams, S. O. Poore, and Z. Ma, “Cuff and sieve electrode (CASE): The combination of neural electrodes for bi-directional peripheral nerve interfacing,” Journal of Neuroscience Methods, vol. 336, p. 108602, 2020.

[91] M. R. MacEwan, E. R. Zellmer, J. J. Wheeler, H. Burton, and D. W. Moran, “Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode,” Frontiers in Neuroscience, vol. 10, 2016.

[92], “Project Overview ' Agonist-antagonist Myoneural Interface (AMI),” MIT Media Lab. [Online]. Available: https://www.media.mit.edu/projects/agonist-antagonist-myoneural-interface-ami/overview/.

[93] M. D. Serruya, “Bottlenecks to clinical translation of direct brain-computer interfaces,” Frontiers in Systems Neuroscience, vol. 8, 2014.

[94] E. S. Ereifej, C. E. Shell, J. S. Schofield, H. Charkhkar, I. Cuberovic, A. D. Dorval, E. L. Graczyk, T. D. Kozai, K. J. Otto, D. J. Tyler, C. G. Welle, A. S. Widge, J. Zariffa, C. T. Moritz, D. J. Bourbeau, and P. D. Marasco, “Neural engineering: the process, applications, and its role in the future of medicine,” Journal of Neural Engineering, vol. 16, no. 6, p. 063002, 2019.

[95] Fan-Gang Zeng, S. Rebscher, W. Harrison, Xiaoan Sun, and Haihong Feng, “Cochlear Implants: System Design, Integration, and Evaluation,” IEEE Reviews in Biomedical Engineering, vol. 1, pp. 115–142, 2008.

[96] D. Silverman, “The Rationale and History of the 10-20 System of the International Federation,” American Journal of EEG Technology, vol. 3, no. 1, pp. 17–22, 1963.

[97] B. Burle, L. Spieser, C. Roger, L. Casini, T. Hasbroucq, and F. Vidal, “Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view,” International Journal of Psychophysiology, vol. 97, no. 3, pp. 210–220, 2015.

[98], “Quantitative EEG,” The NeuroDevelopment Center, 18-Jun-2019. [Online]. Available: https://www.neurodevelopmentcenter.com/neurofeedback-2/qeeg/.

[99] J. J. Newson and T. C. Thiagarajan, “EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies,” Frontiers in Human Neuroscience, vol. 12, 2019. 

[100] S. Okawa and S. Honda, “Reduction of noise from magnetoencephalography data,” Medical & Biological Engineering & Computing, vol. 43, no. 5, pp. 630–637, 2005.

[101] R. B. Lipton, D. W. Dodick, S. D. Silberstein, J. R. Saper, S. K. Aurora, S. H. Pearlman, R. E. Fischell, P. L. Ruppel, and P. J. Goadsby, “Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham-controlled trial,” The Lancet Neurology, vol. 9, no. 4, pp. 373–380, 2010.

[102] R. B. Lipton, D. W. Dodick, S. D. Silberstein, J. R. Saper, S. K. Aurora, S. H. Pearlman, R. E. Fischell, P. L. Ruppel, and P. J. Goadsby, “Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham-controlled trial,” The Lancet Neurology, vol. 9, no. 4, pp. 373–380, 2010.

[103] A. F. Leuchter, I. A. Cook, D. Feifel, J. W. Goethe, M. Husain, L. L. Carpenter, M. E. Thase, A. D. Krystal, N. S. Philip, M. T. Bhati, W. J. Burke, R. H. Howland, Y. I. Sheline, S. T. Aaronson, D. V. Iosifescu, J. P. O'Reardon, W. S. Gilmer, R. Jain, K. S. Burgoyne, B. Phillips, P. J. Manberg, J. Massaro, A. M. Hunter, S. H. Lisanby, and M. S. George, “Efficacy and Safety of Low-field Synchronized Transcranial Magnetic Stimulation (sTMS) for Treatment of Major Depression,” Brain Stimulation, vol. 8, no. 4, pp. 787–794, 2015.

[104] P. Hamid, B. H. Malik, and M. L. Hussain, “Noninvasive Transcranial Magnetic Stimulation (TMS) in Chronic Refractory Pain: A Systematic Review,” Cureus, 2019.

[105] J. Keil, J. Timm, I. SanMiguel, H. Schulz, J. Obleser, and M. Schönwiesner, “Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials,” Journal of Neurophysiology, vol. 111, no. 3, pp. 513–519, 2014.

[106], [Online]. Available: https://headachemigraine.org/eneura-bankruptcy-what-does-this-mean-for-patients/.

[107] B. W. Badran, K. A. Caulfield, J. W. Lopez, C. Cox, S. Stomberg-Firestein, W. H. DeVries, L. M. McTeague, M. S. George, and D. Roberts, “Personalized TMS helmets for quick and reliable TMS administration outside of a laboratory setting,” Brain Stimulation, vol. 13, no. 3, pp. 551–553, 2020.

[108], “510(k) Premarket Notification,” accessdata.fda.gov. [Online]. Available: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K161663.

[109], “NCS VS EMG: What's Needed for a CMT Diagnosis,” bestfoot4wardblog, 20-Mar-2020. [Online]. Available: https://bestfoot4wardblog.com/2020/01/21/ncs-vs-emg-whats-needed-for-a-cmt-diagnosis/.

[110] W. J. Tyler, S. W. Lani, and G. M. Hwang, “Ultrasonic modulation of neural circuit activity,” Current Opinion in Neurobiology, vol. 50, pp. 222–231, 2018.

[111] R. Linke, “Focused Ultrasound: Noninvasive Surgery Stops Tremor in its Tracks,” Brigham Health On a Mission, 28-Jan-2020. [Online]. Available: https://www.brighamhealthonamission.org/2018/12/11/focused-ultrasound-noninvasive-surgery-stops-tremor-in-its-tracks/.

[112], “Positron emission tomography scan,” Mayo Clinic, 25-Aug-2020. [Online]. Available: https://www.mayoclinic.org/tests-procedures/pet-scan/about/pac-20385078.

[113] C. Ning, L. Zhou, and G. Tan, “Fourth-generation biomedical materials,” Materials Today, vol. 19, no. 1, pp. 2–3, 2016.

[114] D. O. Adewole, M. D. Serruya, J. A. Wolf, and D. K. Cullen, “Bioactive Neuroelectronic Interfaces,” Frontiers in Neuroscience, vol. 13, 2019.

[115] E. Lopatto, “Elon Musk unveils Neuralink's plans for brain-reading 'threads' and a robot to insert them,” The Verge, 17-Jul-2019. [Online]. Available: https://www.theverge.com/2019/7/16/20697123/elon-musk-neuralink-brain-reading-thread-robot.

[116] BracketsTech, “Elon Musk's Neuralink Aims to Merge Human Brain With A.I,” TechBrackets, 18-Jul-2020. [Online]. Available: https://www.techbrackets.com/elon-musk-neuralink-merge-human-brain-ai/.

[117] C. P. Constantin, M. Aflori, R. F. Damian, and R. D. Rusu, “Biocompatibility of Polyimides: A Mini-Review,” Materials, vol. 12, no. 19, p. 3166, 2019.

[118] W. Yang, Y. Gong, and W. Li, “A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants,” Frontiers in Bioengineering and Biotechnology, vol. 8, 2021. 


---- Lesson 6 ----

[119] T. Sofatzis, “About Neuromodulation,” International Neuromodulation Society. [Online]. Available: https://www.neuromodulation.com/about-neuromodulation.

[120] S. Thomson, “Treatment,” International Neuromodulation Society. [Online]. Available: https://www.neuromodulation.com/treatment.

[121] N. Garcia, “Conditions-Patient,” International Neuromodulation Society. [Online]. Available: https://www.neuromodulation.com/conditions.

[122] S. Thomson, “Spinal Cord Stimulation,” International Neuromodulation Society. [Online]. Available: https://www.neuromodulation.com/spinal-cord-stimulation.

[123] N. Garcia, “Cochlear Implants,” International Neuromodulation Society. [Online]. Available: https://www.neuromodulation.com/cochlear-implant.

[124] N. Garcia, “Deep Brain Stimulation,” International Neuromodulation Society. [Online]. Available: https://www.neuromodulation.com/deep-brain-stimulation.

[125] Neuralink Progress Update, Summer 2020. YouTube, 2020.

[126] J. Wakefield, “Brain implants used to fight drug addiction in US,” BBC News, 08-Nov-2019. [Online]. Available: https://www.bbc.com/news/technology-50347421.

[127], “Chip Implanted In Brain May Help Curb Opioid Addiction,” Addiction Center, 20-Nov-2020. [Online]. Available: https://www.addictioncenter.com/news/2020/01/chip-brain-opioid-addiction/.

[128], “New Study Demonstrates Spinal Cord Stimulation Can Reduce or Stabilize Opioid Use Among Chronic Pain Patients,” Abbott MediaRoom. [Online]. Available: https://abbott.mediaroom.com/2017-01-20-New-Study-Demonstrates-Spinal-Cord-Stimulation-Can-Reduce-or-Stabilize-Opioid-Use-Among-Chronic-Pain-Patients.

[129] H. H. S. O. of the Secretary and A. S. for H. (ASH), “Pain Management Best Practices Inter-Agency Task Force,” HHS.gov, 26-Aug-2019. [Online]. Available: https://www.hhs.gov/ash/advisory-committees/pain/index.html.

[130] T. A. Henderson, M. J. van Lierop, M. McLean, J. M. Uszler, J. F. Thornton, Y.-H. Siow, D. G. Pavel, J. Cardaci, and P. Cohen, “Functional Neuroimaging in Psychiatry—Aiding in Diagnosis and Guiding Treatment. What the American Psychiatric Association Does Not Know,” Frontiers in Psychiatry, vol. 11, 2020.

[131] D. Orringer, D. Vago, and A. Golby, “Clinical Applications and Future Directions of Functional MRI,” Seminars in Neurology, vol. 32, no. 04, pp. 466–475, 2013.

[132] A. Charalampidis, F. Jiang, J. R. Wilson, J. H. Badhiwala, D. S. Brodke, and M. G. Fehlings, “The Use of Intraoperative Neurophysiological Monitoring in Spine Surgery,” Global Spine Journal, vol. 10, no. 1_suppl, 2020.

[133], “Nerve Conduction Studies,” Johns Hopkins Medicine. [Online]. Available: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/nerve-conduction-studies.

[134] M. K. Lyons, “Deep Brain Stimulation: Current and Future Clinical Applications,” Mayo Clinic Proceedings, vol. 86, no. 7, pp. 662–672, 2011.

[135], “Abbott Neuromodulation,” St. Jude Medical Infinity™ DBS System. [Online]. Available: https://www.neuromodulation.abbott/us/en/products/dbs-therapy-movement-disorders/st-jude-medical-infinity-dbs-system.html#:~:text=The%20St.,never%20needs%20to%20be%20recharged.

[136] A. Mahajan, A. Butala, M. S. Okun, Z. Mari, and K. A. Mills, “Global Variability in Deep Brain Stimulation Practices for Parkinson’s Disease,” Frontiers in Human Neuroscience, vol. 15, 2021.

[137], “Deep Brain Stimulation for Movement Disorders,” National Institute of Neurological Disorders and Stroke. [Online]. Available: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Deep-Brain-Stimulation-Movement-Disorders-Fact.

[138] M. J. Edwards, P. Talelli, and J. C. Rothwell, “Clinical applications of transcranial magnetic stimulation in patients with movement disorders,” The Lancet Neurology, vol. 7, no. 9, pp. 827–840, 2008.

[139] R. Cantello, “Applications of Transcranial Magnetic Stimulation in Movement Disorders,” Journal of Clinical Neurophysiology, vol. 19, no. 4, pp. 272–293, 2002.

[140] P. Lozeron, A. Poujois, A. Richard, S. Masmoudi, E. Meppiel, F. Woimant, and N. Kubis, “Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia,” Frontiers in Neural Circuits, vol. 10, 2016.

[141] D. Mennitto, Frequently Asked Questions About TMS at The Johns Hopkins Hospital in Baltimore, Maryland, 05-Feb-2019. [Online]. Available: https://www.hopkinsmedicine.org/psychiatry/specialty_areas/brain_stimulation/tms/faq_tms.html.

[142] S. Rossi, M. Hallett, P. M. Rossini, and A. Pascual-Leone, “Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research,” Clinical Neurophysiology, vol. 120, no. 12, pp. 2008–2039, 2009.

[143] J. Ganguly, A. Murgai, S. Sharma, D. Aur, and M. Jog, “Non-invasive Transcranial Electrical Stimulation in Movement Disorders,” Frontiers in Neuroscience, vol. 14, 2020.

[144] J. C. Horvath, O. Carter, and J. D. Forte, “Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be),” Frontiers in Systems Neuroscience, vol. 8, 2014.

[145] A. Wexler, “A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (TDCS) devices in the United States: Table 1.,” Journal of Law and the Biosciences, 2015.

[146] A. R. Brunoni, J. Amadera, B. Berbel, M. S. Volz, B. G. Rizzerio, and F. Fregni, “A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation,” International Journal of Neuropsychopharmacology, vol. 14, no. 8, pp. 1133–1145, 2011.

[147], “Soterix Medical tDCS Solutions,” tDCS Overview – Transcranial Direct Current Stimulation – Soterix Medical. [Online]. Available: https://soterixmedical.com/research/1x1/tdcs.

[148], tDCS Applications. [Online]. Available: https://www.jalimedical.com/tdcs.php.

[149] A. Jwa, “Early adopters of the magical thinking cap: a study on do-it-yourself (DIY) transcranial direct current stimulation (tDCS) user community,” Journal of Law and the Biosciences, vol. 2, no. 2, pp. 292–335, 2015.

[150] J. L. Dideriksen, C. M. Laine, S. Dosen, S. Muceli, E. Rocon, J. L. Pons, J. Benito-Leon, and D. Farina, “Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor,” Frontiers in Neuroscience, vol. 11, 2017.

[151] J. L. Dideriksen, C. M. Laine, S. Dosen, S. Muceli, E. Rocon, J. L. Pons, J. Benito-Leon, and D. Farina, “Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor,” Frontiers in Neuroscience, vol. 11, 2017.

[152] M. D. Fox, H. Liu, and A. Pascual-Leone, “Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity,” NeuroImage, vol. 66, pp. 151–160, 2013.

[153], “Deep Brain Stimulation for Depression in Adults,” Patient Care at NYU Langone Health. [Online]. Available: https://nyulangone.org/conditions/depression-in-adults/treatments/deep-brain-stimulation-for-depression-in-adults.

[154] O. Durmaz, M. A. Ates, and M. G. Senol, “Repetitive Transcranial Magnetic Stimulation (rTMS)-Induced Trigeminal Autonomic Cephalalgia,” Noro Psikiyatri Arsivi, vol. 52, no. 3, pp. 309–311, 2015.

[155], “Transcranial Direct Current Stimulation (tDCS) Therapy in Major Depression - Full Text View,” Full Text View - ClinicalTrials.gov. [Online]. Available: https://clinicaltrials.gov/ct2/show/NCT04507243.

[156] M. A. Geramita, E. A. Yttri, and S. E. Ahmari, “The two‐step task, avoidance, and OCD,” Journal of Neuroscience Research, vol. 98, no. 6, pp. 1007–1019, 2020.

[157] R. J. Park, I. Singh, A. C. Pike, and J. O. Tan, “Deep Brain Stimulation in Anorexia Nervosa: Hope for the Hopeless or Exploitation of the Vulnerable? The Oxford Neuroethics Gold Standard Framework,” Frontiers in Psychiatry, vol. 8, 2017.

[158] P. E. Holtzheimer and H. S. Mayberg, “Deep Brain Stimulation for Psychiatric Disorders,” Annual Review of Neuroscience, vol. 34, no. 1, pp. 289–307, 2011.

[159], “Translational Neuropsychiatry Through Neuromodulation,” TN Lab. [Online]. Available: https://www.moussawi.pitt.edu/.

[160], “Transcranial Magnetic Stimulation (TMS) Treatment for Alcohol Use Disorder - Full Text View,” Full Text View - ClinicalTrials.gov. [Online]. Available: https://clinicaltrials.gov/ct2/show/NCT03969251.

[161] J. J. Hagedorn, J Jon Hagedorn Jon Hagedorn, and J. Hagedorn, “Chronic Pain, the Opioid Epidemic, and the Role of Neuromodulation,” Student Doctor Network, 17-Jan-2019. [Online]. Available: https://www.studentdoctor.net/2018/01/30/chronic-pain-opioid-epidemic-neuromodulation/.

[162], “DETERMINATION THAT A PUBLIC HEALTH EMERGENCY EXISTS.” [Online]. Available: https://www.cms.gov/About-CMS/Agency-Information/Emergency/Downloads/Hurricane-Dorian-PHE-declaration.pdf.

[163] U. S. G. A. Office, Opioid Crisis: Status of Public Health Emergency Authorities. [Online]. Available: https://www.gao.gov/products/gao-18-685r.

[164], “Strategy to Combat Opioid Abuse, Misuse, and Overdose.” [Online]. Available: https://www.hhs.gov/opioids/sites/default/files/2018-09/opioid-fivepoint-strategy-20180917-508compliant.pdf.

[165] P. L. Gildenberg, “History of Electrical Neuromodulation for Chronic Pain,” Pain Medicine, vol. 7, no. suppl 1, 2006.

[166] R. Baker, “Medical Ethics, History of,” Encyclopedia of Applied Ethics, pp. 61–69, 2012.

[167], “Premarket Approval (PMA),” accessdata.fda.gov. [Online]. Available: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P010032.

[168], “Neurotech Industry Landscape Overview,” Neurotech. [Online]. Available: https://www.neurotech.com/landscape-overview-2020.

[169] E. M. Hagen, “Acute complications of spinal cord injuries,” World Journal of Orthopedics, vol. 6, no. 1, p. 17, 2015.

[170] N. Sezer, “Chronic complications of spinal cord injury,” World Journal of Orthopedics, vol. 6, no. 1, p. 24, 2015.

[171], “SCI Forum Report & Video,” Management of Urinary Problems Caused by Spinal Cord Injury. [Online]. Available: https://sci.washington.edu/info/forums/reports/urinary_problems.asp#best.

[172] E. E. Low, E. Inkellis, and S. Morshed, “Complications and revision amputation following trauma-related lower limb loss,” Injury, vol. 48, no. 2, pp. 364–370, 2017.

[173] C. F. Mendes de Leon, L. L. Barnes, J. L. Bienias, K. A. Skarupski, and D. A. Evans, “Racial Disparities in Disability: Recent Evidence From Self-Reported and Performance-Based Disability Measures in a Population-Based Study of Older Adults,” The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, vol. 60, no. 5, 2005.

[174], “Health Disparities at the Intersection of Disability and Gender Identity:” Disability Rights Education & Defense Fund. [Online]. Available: https://dredf.org/health-disparities-at-the-intersection-of-disability-and-gender-identity/.

[175] E. A. Courtney-Long, S. D. Romano, D. D. Carroll, and M. H. Fox, “Socioeconomic Factors at the Intersection of Race and Ethnicity Influencing Health Risks for People with Disabilities,” Journal of Racial and Ethnic Health Disparities, vol. 4, no. 2, pp. 213–222, 2016.

[176] S. P. Lad, O. A. Umeano, I. O. Karikari, A. Somasundaram, C. A. Bagley, O. N. Gottfried, R. E. Isaacs, B. Ugiliweneza, C. G. Patil, K. Huang, and M. Boakye, “Racial Disparities in Outcomes after Spinal Cord Injury,” Journal of Neurotrauma, vol. 30, no. 6, pp. 492–497, 2013.

[177] N. A. Miller, A. Kirk, B. Alston, and L. Glos, “Effects of Gender, Disability, and Age in the Receipt of Preventive Services,” The Gerontologist, vol. 54, no. 3, pp. 473–487, 2013.

[178] W. J. Riley, “Health disparities: gaps in access, quality and affordability of medical care,” Transactions of the American Clinical and Climatological Association, 2012. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540621/.

[179], “Why Limbs,” LIMBS INTERNATIONAL. [Online]. Available: https://www.limbsinternational.org/why-limbs.html.

[180], “Florida man becomes first person to live with advanced mind-controlled robotic arm,” Futurism, 03-Feb-2018. [Online]. Available: https://futurism.com/mind-controlled-robotic-arm-johnny-matheny.

[181] U. S. C. Bureau, “Income and Poverty in the United States: 2019,” The United States Census Bureau, 15-Sep-2020. [Online]. Available: https://www.census.gov/library/publications/2020/demo/p60-270.html. [Accessed: 19-Jun-2021].

[182] E. Kwek and M. Choi, “Is a prosthetic arm customized PRADA? A critical perspective on the social aspects of prosthetic arms,” Disability & Society, vol. 31, no. 8, pp. 1144–1147, 2016.

[183], “What is API?,” Accessible Prosthetics Initiative. [Online]. Available: https://u.osu.edu/ohiostateapi/.

[184], “ABOUT US,” Enabling The Future, 12-Nov-2019. [Online]. Available: https://enablingthefuture.org/about/.

[185], “LIMBS International,” LIMBS INTERNATIONAL. [Online]. Available: https://www.limbsinternational.org/.

[186], “Electrical Stimulation for Urinary Incontinence & Overactive Bladder,” WebMD. [Online]. Available: https://www.webmd.com/urinary-incontinence-oab/overactive-bladder-electrical-stimulation#:~:text=Your%20doctor%20inserts%20a%20thin%20needle%20under%20the,nerves%20in%20your%20spine%20that%20control%20your%20bladder.

[187], “Press Release,” JHU/APL Brand. [Online]. Available: https://www.jhuapl.edu/PressRelease/191016.

[188], “Creating a Prosthetic Hand That Can Feel,” IEEE Spectrum: Technology, Engineering, and Science News. [Online]. Available: https://spectrum.ieee.org/biomedical/bionics/creating-a-prosthetic-hand-that-can-feel.

[189] M. Hariz and J. P. Amadio, “The New Era of Neuromodulation,” Journal of Ethics | American Medical Association, 01-Jan-2015. [Online]. Available: https://journalofethics.ama-assn.org/article/new-era-neuromodulation/2015-01.

[190], “How many senses do we have?,” How many senses do we have? | JHU Press. [Online]. Available: https://www.press.jhu.edu/news/blog/how-many-senses-do-we-have.

[191] S. Khan and R. Chang, “Anatomy of the vestibular system: A review,” NeuroRehabilitation, vol. 32, no. 3, pp. 437–443, 2013.

[192], “Cochlear Implants,” National Institute of Deafness and Other Communication Disorders, 29-Apr-2021. [Online]. Available: https://www.nidcd.nih.gov/health/cochlear-implants.

[193], “Cochlear Implant Surgery,” Johns Hopkins Medicine. [Online]. Available: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/cochlear-implant-surgery.

[194] I. Boisvert, M. Reis, A. Au, R. Cowan, and R. C. Dowell, “Cochlear implantation outcomes in adults: A scoping review,” PLOS ONE, vol. 15, no. 5, 2020.

[195] M. F. Dorman, S. C. Natale, A. M. Butts, D. M. Zeitler, and M. L. Carlson, “The Sound Quality of Cochlear Implants: Studies With Single-sided Deaf Patients,” Otology & Neurotology, vol. 38, no. 8, 2017.

[196] M. Cleary, D. B. Pisoni, and K. I. Kirk, “Influence of Voice Similarity on Talker Discrimination in Children With Normal Hearing and Children With Cochlear Implants,” Journal of Speech, Language, and Hearing Research, vol. 48, no. 1, pp. 204–223, 2005.

[197] D. B. Pisoni, W. G. Kronenberger, M. S. Harris, and A. C. Moberly, “Three challenges for future research on cochlear implants,” World Journal of Otorhinolaryngology - Head and Neck Surgery, vol. 3, no. 4, pp. 240–254, 2017.

[198], “About,” wunderlife, 25-Feb-2012. [Online]. Available: https://wunderlife.wordpress.com/about/.

[199], “Second Sight Medical Products - Life in a New Light,” Second Sight. [Online]. Available: https://secondsight.com/.

[200], “Retinitis pigmentosa: MedlinePlus Medical Encyclopedia,” MedlinePlus. [Online]. Available: https://medlineplus.gov/ency/article/001029.htm#:~:text=Possible%20Complications&text=Peripheral%20and%20central%20loss%20of,they%20contribute%20to%20vision%20loss. [Accessed: 19-Jun-2021].

[201], “The HDE Summary of Safety and Probable Benefit What It Is.” [Online]. Available: https://www.accessdata.fda.gov/cdrh_docs/pdf11/H110002b.pdf.

[202], “Artificial Retina Receives FDA Approval,” NSF. [Online]. Available: https://www.nsf.gov/news/news_summ.jsp?cntn_id=126756.

[203], “PRIMA US-Feasibility Study in Atrophic Dry AMD,” PRIMA US-Feasibility Study in Atrophic Dry AMD - Full Text View - ClinicalTrials.gov. [Online]. Available: https://clinicaltrials.gov/ct2/show/NCT03392324?term=NCT03392324&rank=1.

[204] S. C. Chen, G. J. Suaning, J. W. Morley, and N. H. Lovell, “Simulating prosthetic vision: I. Visual models of phosphenes,” Vision Research, vol. 49, no. 12, pp. 1493–1506, 2009.

[205], “Loss of Smell: Sensory Restoration Technologies: United States,” Anosmia. [Online]. Available: https://www.sensoryrestorationtechnologies.com/.

[206] S. Boesveldt, E. M. Postma, D. Boak, A. Welge-Luessen, V. Schöpf, J. D. Mainland, J. Martens, J. Ngai, and V. B. Duffy, “Anosmia—A Clinical Review,” Chemical Senses, vol. 42, no. 7, pp. 513–523, 2017.

[207] A. Giorli, F. Ferretti, C. Biagini, L. Salerni, I. Bindi, S. Dasgupta, A. Pozza, G. Gualtieri, R. Gusinu, A. Coluccia, and M. Mandalà, “A Literature Systematic Review with Meta-Analysis of Symptoms Prevalence in Covid-19: the Relevance of Olfactory Symptoms in Infection Not Requiring Hospitalization,” Current Treatment Options in Neurology, vol. 22, no. 10, 2020.

[208] A. Walker, G. Pottinger, A. Scott, and C. Hopkins, “Anosmia and loss of smell in the era of covid-19,” BMJ, p. m2808, 2020.

[209], “Coronavirus (COVID-19) frequently asked questions,” Centers for Disease Control and Prevention. [Online]. Available: https://www.cdc.gov/coronavirus/2019-ncov/faq.html#:~:text=COVID%2D19%20is%20a,post%2DCOVID%20conditions.

[210] R. M. COSTANZO, “Wireless implantable taste system.”

[211] M. Espinosa and D. Nathan-Roberts, “Understanding Prosthetic Abandonment,” Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 63, no. 1, pp. 1644–1648, 2019.

[212], “The Cost of a New Limb Can Add up Over a Lifetime,” Hospital for Special Surgery. [Online]. Available: https://www.hss.edu/newsroom_prosthetic-leg-cost-over-lifetime.asp#:~:text=The%20price%20of%20a%20new,not%20a%20one%2Dtime%20cost.

[213], “Research,” Research | Department of Biomedical Engineering. [Online]. Available: https://engineering.case.edu/ebme/tyler/research.

[214] Prosthetic Hand Restores Sense of Touch. YouTube, 2016.

[215], “In a First, Pitt-UPMC Team Help Paralyzed Man Feel Again Through a Mind-Controlled Robotic Arm,” Regenerative Medicine at the McGowan Institute. [Online]. Available: https://mirm-pitt.net/news-archive/in-a-first-pitt-upmc-team-help-paralyzed-man-feel-again-through-a-mind-controlled-robotic-arm/.

[216], “Assistive Technology: BrainPort Technologies: United States,” Brainport. [Online]. Available: https://www.wicab.com/.

[217] BrainPort Vision Device. YouTube, 2011.

[218], “HKUST Scientists Develop World's First Spherical Artificial Eye with 3D Retina: The Hong Kong University of Science and Technology,” HKUST Scientists Develop World's First Spherical Artificial Eye with 3D Retina | The Hong Kong University of Science and Technology. [Online]. Available: https://hkust.edu.hk/news/research-and-innovation/hkust-scientists-develop-worlds-first-spherical-artificial-eye-3d.

[219] M. Pais-Vieira, M. Lebedev, C. Kunicki, J. Wang, and M. A. Nicolelis, “A Brain-to-Brain Interface for Real-Time Sharing of Sensorimotor Information,” Scientific Reports, vol. 3, no. 1, 2013.

[220] AlterEgo: Interfacing with devices through silent speech. 2018.

[221] A. Kapur, “How AI could become an extension of your mind,” TED. [Online]. Available: https://www.ted.com/talks/arnav_kapur_how_ai_could_become_an_extension_of_your_mind. [Accessed: 19-Jun-2021].

[222], “Project Overview ' AlterEgo,” MIT Media Lab. [Online]. Available: https://www.media.mit.edu/projects/alterego/overview/. [Accessed: 19-Jun-2021].

[223] R. Naam and Brèque Jean-Daniel, Nexus. Paris: Pocket, 2016.

[224], DARPA RSS. [Online]. Available: https://www.darpa.mil/program/next-generation-nonsurgical-neurotechnology. 


---- Lesson 7 ----


[225], “What are ADLs & IADLs?,” Better Health While Aging. [Online]. Available: https://betterhealthwhileaging.net/what-are-adls-and-iadls/.

[226] J. J. Shih, D. J. Krusienski, and J. R. Wolpaw, “Brain-Computer Interfaces in Medicine,” Mayo Clinic Proceedings, vol. 87, no. 3, pp. 268–279, 2012.

[227] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain Computer Interfaces, a Review,” Sensors, vol. 12, no. 2, pp. 1211–1279, 2012.

[228] W. Zhang, C. Tan, F. Sun, H. Wu, and B. Zhang, “A Review of EEG-Based Brain-Computer Interface Systems Design,” Brain Science Advances, vol. 4, no. 2, pp. 156–167, 2018.

[229] T. Hernández-Del-Toro, C. A. Reyes-García, and L. Villaseñor-Pineda, “Toward asynchronous EEG-based BCI: Detecting imagined words segments in continuous EEG signals,” Biomedical Signal Processing and Control, vol. 65, p. 102351, 2021.

[230] L. Cao, B. Xia, O. Maysam, J. Li, H. Xie, and N. Birbaumer, “A Synchronous Motor Imagery Based Neural Physiological Paradigm for Brain Computer Interface Speller,” Frontiers in Human Neuroscience, vol. 11, 2017.

[231] A. Bonci, S. Fiori, H. Higashi, T. Tanaka, and F. Verdini, “An Introductory Tutorial on Brain–Computer Interfaces and Their Applications,” Electronics, vol. 10, no. 5, p. 560, 2021.

[232] J. S. Brumberg and F. H. Guenther, “Development of speech prostheses: current status and recent advances,” Expert Review of Medical Devices, vol. 7, no. 5, pp. 667–679, 2010.

[233], “What is population coding? ,” What is population coding? Describe the population coding model proposed by Georgopoulos in the 1980s for M1 control of arm direction. [Online]. Available: https://charlesfrye.github.io/FoundationalNeuroscience//49/#:~:text=Heights%20represent%20spike%20counts%20.

[234], “Theoretical Considerations for the Analysis of Population Coding in Motor Cortex,” Neural Codes and Distributed Representations, 1999.

[235] L. Mathew, Recent advances and trends in electrical engineering ratee-2014. .

[236], “The Biomechatronics Group seeks to advance the science of biomechanics and biological movement control, and to apply that knowledge to the design of human rehabilitation and augmentation technology,” Biomechatronics. [Online]. Available: https://biomech.media.mit.edu/about/.

[237] S. Nagamori and H. Tanaka, “ERD analysis method in motor imagery brain–computer interfaces for accurate switch input,” Artificial Life and Robotics, vol. 22, no. 1, pp. 83–89, 2016.

[238] S. Crea, M. Nann, E. Trigili, F. Cordella, A. Baldoni, F. J. Badesa, J. M. Catalán, L. Zollo, N. Vitiello, N. G. Aracil, and S. R. Soekadar, “Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living,” Scientific Reports, vol. 8, no. 1, 2018.

[239] Miguel Nicolelis: A monkey that controls a robot with its thoughts. No, really. YouTube, 2013.

[240] Monkey MindPong. 2021.

[241], “Sensory Evoked Potentials Studies,” Johns Hopkins Medicine. [Online]. Available: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/sensory-evoked-potentials-studies.

[242] A. Maye, D. Zhang, Y. Wang, S. Gao, and A. K. Engel, “Multimodal brain-computer interfaces,” Tsinghua Science and Technology, vol. 16, no. 2, pp. 133–139, 2011.

[243] N. Grigorev, A. Savosenkov, A. Udoratina, V. Kazantsev, M. Lukoyanov, and S. Gordleeva, “Influence of Vibrotactile Feedback on the Motor Evoked Potentials (MEPs) Induced by Motor Imagery,” 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), 2020.

[244] C. Han, G. Xu, J. Xie, C. Chen, and S. Zhang, “Highly Interactive Brain–Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential,” Scientific Reports, vol. 8, no. 1, 2018.

[245] D. J. Krusienski and J. J. Shih, “Control of a Visual Keyboard Using an Electrocorticographic Brain–Computer Interface,” Neurorehabilitation and Neural Repair, vol. 25, no. 4, pp. 323–331, 2010.

[246] R. Fazel-Rezai, B. Z. Allison, C. Guger, E. W. Sellers, S. C. Kleih, and A. Kübler, “P300 brain computer interface: current challenges and emerging trends,” Frontiers in Neuroengineering, vol. 5, 2012.

[247] S. Sur and V. K. Sinha, “Event-related potential: An overview,” Industrial Psychiatry Journal, vol. 18, no. 1, p. 70, 2009.

[248] Duke study: Monkeys "Move and Feel" Virtual Objects Using Only Their Brains. YouTube, 2011.

[249] Can we move beyond the machine-brain barrier? YouTube, 2012.

[250], “Lecture 7 - The Discrete Fourier Transform.” [Online]. Available: https://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf.

[251], “Power spectral density vs. FFT bin magnitude,” Signal Processing Stack Exchange, 01-Feb-1964. [Online]. Available: https://dsp.stackexchange.com/questions/24780/power-spectral-density-vs-fft-bin-magnitude.

[252] H. Chaudhari, S. L. Nalbalwar, and R. Sheth, “A review on intrensic mode function of EMD,” 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016. 

[253] Wu F, Jiang XP, Yu HW, Xiu LC. Application of Empirical Mode Decomposition and Independent Component Analysis for the Interpretation of Rock-Mineral Spectrum. Guang pu xue yu Guang pu fen xi = Guang pu. 2016 May;36(5):1592-1597.

[254] L.-C. Shi, Y. Li, R.-H. Sun, and B.-L. Lu, “A Sparse Common Spatial Pattern Algorithm for Brain-Computer Interface,” Neural Information Processing, pp. 725–733, 2011.

[255] N. S. Malan and S. Sharma, “Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals,” Computers in Biology and Medicine, vol. 107, pp. 118–126, 2019.

[256] E. C. Leuthardt, G. Schalk, D. Moran, and J. G. Ojemann, “The Emerging World Of Motor Neuroprosthetics: a Neurosurgical Perspective,” Neurosurgery, vol. 59, no. 1, pp. 1–14, 2006.

[257] Amputee Makes History with APL's Modular Prosthetic Limb. YouTube, 2014.

[258] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature, vol. 485, no. 7398, pp. 372–375, 2012.

[259], ABC News. [Online]. Available: https://abcnews.go.com/Health/w_MindBodyNews/paralyzed-woman-moves-robotic-arm-mind/story?id=16353993.

[260], “People with paralysis control robotic arms using brain-computer interface,” People with paralysis control robotic arms using brain-computer interface | News from Brown, 16-May-2012. [Online]. Available: https://news.brown.edu/articles/2012/05/braingate2.

[261], DARPA RSS. [Online]. Available: https://www.darpa.mil/program/revolutionizing-prosthetics.

[262], “Fayette man's rapid control of robotic arm at Pitt lab detailed in 'Science',” TribLIVE.com. [Online]. Available: https://triblive.com/local/regional/fayette-mans-rapid-control-of-robotic-arm-at-pitt-lab-detailed-in-science/.

[263], “DARPA Helps Paralyzed Man Feel Again Using a Brain-Controlled Robotic Arm,” DARPA RSS. [Online]. Available: https://www.darpa.mil/news-events/2016-10-13.

[264] S. N. Flesher, J. L. Collinger, S. T. Foldes, J. M. Weiss, J. E. Downey, E. C. Tyler-Kabara, S. J. Bensmaia, A. B. Schwartz, M. L. Boninger, and R. A. Gaunt, “Intracortical microstimulation of human somatosensory cortex,” Science Translational Medicine, vol. 8, no. 361, 2016.

[265], “Turning Disabilities into Superpowers,” Open Bionics, 12-Jun-2021. [Online]. Available: https://openbionics.com/.

[266], “Exoskeleton Technologies: Military,” Lockheed Martin, 10-May-2021. [Online]. Available: https://www.lockheedmartin.com/en-us/products/exoskeleton-technologies/military.html#:~:text=Lockheed%20Martin%27s%20new%20powered%20lower,while%20carrying%20mission%2Dessential%20equipment. [Accessed: 19-Jun-2021].

[267] Space Force. 2020.

[268], “Exoskeletons for Walking Augmentation,” Biomechatronics. [Online]. Available: https://biomech.media.mit.edu/portfolio_page/load-bearing-exoskeleton-for-walking/.

[269] EurekAlert, “Brain-controlled, non-invasive muscle stimulation allows chronic paraplegics to walk,” EurekAlert! [Online]. Available: https://www.eurekalert.org/pub_releases/2019-05/aasd-bnm051119.php.

[270], “'We Did It!' Brain-Controlled 'Iron Man' Suit Kicks Off World Cup,” NBCNews.com, 11-Jun-2015. [Online]. Available: https://www.nbcnews.com/storyline/world-cup/we-did-it-brain-controlled-iron-man-suit-kicks-world-n129941.

[271] L. Xin, S. Gao, J. Tang, and X. Xu, “Design of a Brain Controlled Wheelchair,” 2018 IEEE 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018.

[272] H. A. Dewald, P. Lukyanenko, J. M. Lambrecht, J. R. Anderson, D. J. Tyler, R. F. Kirsch, and M. R. Williams, “Stable, three degree-of-freedom myoelectric prosthetic control via chronic bipolar intramuscular electrodes: a case study,” Journal of NeuroEngineering and Rehabilitation, vol. 16, no. 1, 2019.

[273] G. Tao, B. Garrett, T. Taverner, E. Cordingley, and C. Sun, “Immersive virtual reality health games: a narrative review of game design,” Journal of NeuroEngineering and Rehabilitation, vol. 18, no. 1, 2021.

[274] S. Nagel and M. Spüler, “Asynchronous non-invasive high-speed BCI speller with robust non-control state detection,” Scientific Reports, vol. 9, no. 1, 2019.

[275] M. Plöchl, J. P. Ossandón, and P. König, “Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data,” Frontiers in Human Neuroscience, vol. 6, 2012.

[276] A. Finke, A. Lenhardt, and H. Ritter, “The MindGame: A P300-based brain–computer interface game,” Neural Networks, vol. 22, no. 9, pp. 1329–1333, 2009.

[277] T. Li, J. Zhang, T. Xue, and B. Wang, “Development of a Novel Motor Imagery Control Technique and Application in a Gaming Environment,” Computational Intelligence and Neuroscience, vol. 2017, pp. 1–16, 2017.

[278] M. W. Tangermann, Playing Pinball with non-invasive BCI. [Online]. Available: https://papers.neurips.cc/paper/2008/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf.

[279], “Monkeys Use Minds to Move Two Virtual Arms,” Laboratory of Dr Miguel Nicolelis. [Online]. Available: https://www.nicolelislab.net/?p=492.

[280] C. Tremmel, C. Herff, T. Sato, K. Rechowicz, Y. Yamani, and D. J. Krusienski, “Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using EEG,” Frontiers in Human Neuroscience, vol. 13, 2019.

[281], “Puzzlebox Orbit: Brain-Controlled Helicopter,” Puzzlebox, 29-Jul-2014. [Online]. Available: https://puzzlebox.io/orbit/.

[282] M. Pais-Vieira, M. Lebedev, C. Kunicki, J. Wang, and M. A. Nicolelis, “A Brain-to-Brain Interface for Real-Time Sharing of Sensorimotor Information,” Scientific Reports, vol. 3, no. 1, 2013.

[283] A. Ramakrishnan, P. J. Ifft, M. Pais-Vieira, Y. W. Byun, K. Z. Zhuang, M. A. Lebedev, and M. A. L. Nicolelis, “Computing Arm Movements with a Monkey Brainet,” Scientific Reports, vol. 5, no. 1, 2015.

[284], “Psycho-Pass,” IMDb, 11-Oct-2012. [Online]. Available: https://www.imdb.com/title/tt2379308/. [Accessed: 19-Jun-2021].

[285] D. J. Ardesch, L. H. Scholtens, and M. P. van den Heuvel, “The human connectome from an evolutionary perspective,” Progress in Brain Research, pp. 129–151, 2019.

[286] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert, “Deep learning-based electroencephalography analysis: a systematic review,” Journal of Neural Engineering, vol. 16, no. 5, p. 051001, 2019.

[287] Q. Wu, Y. Zeng, C. Zhang, L. Tong, and B. Yan, “An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals,” Sensors, vol. 18, no. 2, p. 335, 2018.

[288] H. Bojinov, D. Sanchez, P. Reber, D. Boneh, and P. Lincoln, “Neuroscience meets cryptography,” Communications of the ACM, vol. 57, no. 5, pp. 110–118, 2014.

[289] T. Denning, Y. Matsuoka, and T. Kohno, “Neurosecurity: security and privacy for neural devices,” Neurosurgical Focus, vol. 27, no. 1, 2009.

[290], BYU Neurosecurity Lab. [Online]. Available: https://neurosecurity.byu.edu/. [Accessed: 19-Jun-2021].

[291], “The Truth About Lie Detectors (aka Polygraph Tests),” American Psychological Association. [Online]. Available: https://www.apa.org/research/action/polygraph. [Accessed: 19-Jun-2021].

[292] L. A. Farwell and E. Donchin, “The Truth Will Out: Interrogative Polygraphy (‘Lie Detection’) With Event-Related Brain Potentials,” Psychophysiology, vol. 28, no. 5, pp. 531–547, 1991.

[293] J. I. Münßinger, S. Halder, S. C. Kleih, A. Furdea, V. Raco, A. Hösle, and A. Kübler, “Brain Painting: First Evaluation of a New Brain–Computer Interface Application with ALS-Patients and Healthy Volunteers,” Frontiers in Neuroscience, vol. 4, 2010.

[294], brainpainting.net. [Online]. Available: https://www.brainpainting.net/140-history.php.

[295], “A 3D printed dress that can extract data from the brain,” 3Dnatives, 31-Aug-2020. [Online]. Available: https://www.3dnatives.com/en/pangolin-3d-printed-dress-310820205/.

[296], “Spring School 2021: 10 Days Online Education,” g.tec medical engineering GmbH, 26-Apr-2021. [Online]. Available: https://www.gtec.at/spring-school-2021/. 


---- Lesson 8 ----


[297], “Brain Computer Interface,” TV Tropes. [Online]. Available: https://tvtropes.org/pmwiki/pmwiki.php/Main/BrainComputerInterface.

[298], American Bar Association. [Online]. Available: https://www.americanbar.org/groups/intellectual_property_law/publications/landslide/2016-17/july-august/what-every-company-should-know-about-ip-rights-when-selling-us-government/.

[299], “Patent Nonuse and Technology Suppression: The Use of Compulsory Licensing to Promote Progress,” University of Pennsylvania Law Review. [Online]. Available: https://www.pennlawreview.com/2020/04/28/patent-nonuse-and-technology-suppression-the-use-of-compulsory-licensing-to-promote-progress/.

[300] H. Herr, “How we'll become cyborgs and extend human potential,” TED. [Online]. Available: https://www.ted.com/talks/hugh_herr_how_we_ll_become_cyborgs_and_extend_human_potential?language=en#t-825816.

[301] H. Herr, “How we'll become cyborgs and extend human potential,” TED. [Online]. Available: https://www.ted.com/talks/hugh_herr_how_we_ll_become_cyborgs_and_extend_human_potential?language=en#t-825816.

[302] Restoring a Sense of Touch in Amputees. 2014.

[303] Prosthetic Hand Restores Sense of Touch. 2016.

[304] Amputee Makes History with APL's Modular Prosthetic Limb. 2014.

[305], “Brain-controlled robotic arm gives paralysed man sense of touch,” South China Morning Post, 21-May-2021. [Online]. Available: https://www.scmp.com/news/world/united-states-canada/article/3134329/brain-controlled-robotic-arm-gives-paralysed-man. 

[307], “March-In Rights And Compulsory Licensing—Safety Nets For Access To A COVID-19 Vaccine, " Health Affairs Blog, May 6, 2020. DOI: 10.1377/hblog20200501.798711

[307] J. Zarocostas, “What next for a COVID-19 intellectual property waiver?,” The Lancet, vol. 397, no. 10288, pp. 1871–1872, 2021.

[308], “Brain Initiative,” National Institutes of Health. [Online]. Available: https://braininitiative.nih.gov/.

[310], “DARPA Rss,” DARPA RSS. [Online]. Available: https://www.darpa.mil/our-research.

[309], “The BRAIN Initiative 2.0: From Cells to Circuits, Toward Cures,” National Institutes of Health. [Online]. Available: https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative%C2%AE-20-cells-circuits-toward-cures.

[311] J. Swartz, “Facebook to buy startup that lets humans control computers with their brains,” MarketWatch, 24-Sep-2019. [Online]. Available: https://www.marketwatch.com/story/facebook-to-buy-startup-that-lets-humans-control-computers-with-their-brains-2019-09-23.

[312], “Facebook Post,” Facebook. [Online]. Available: https://www.facebook.com/plugins/post.php?href=https%3A%2F%2Fwww.facebook.com%2Fboz%2Fposts%2F10109385805377581&show_text=true&width=500.

“[313] Facebook Post,” Facebook. [Online]. Available: https://www.facebook.com/zuck/videos/vb.4/10103661167577621/?type=2&theater.

“[314] Imagining a new interface: Hands-free communication without saying a word,” Facebook Technology, 30-Mar-2020. [Online]. Available: https://tech.fb.com/imagining-a-new-interface-hands-free-communication-without-saying-a-word/.

[315] G. Alexiou, “Could Elon Musk's Neuralink Be A Game-Changer For People With Disabilities?,” Forbes, 09-Sep-2020. [Online]. Available: https://www.forbes.com/sites/gusalexiou/2020/09/08/could-elon-musks-neuralink-be-a-game-changer-for-people-with-disabilities/.

“[316].” [Online]. Available: https://www.blackrockmicro.com/electrode-types/utah-array/.

[317], “Currently Available Deep Brain Stimulation Devices,” The Michael J. Fox Foundation for Parkinson's Research | Parkinson's Disease. [Online]. Available: https://www.michaeljfox.org/news/currently-available-deep-brain-stimulation-devices. 

Asset Citations (Images & Videos)

---- Lesson 1 ----

1: http://www.neuro-it.net/pdf_dateien/summer_2004/Chapin%201999.pdf

2: https://humanfusions.org/

3: http://www.humanconnectomeproject.org/

4: https://neuroscienceblueprint.nih.gov/human-connectome/connectome-programs 

5: https://www.elgaronline.com/view/edcoll/9781785365034/9781785365034.00011.xml 

6: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365771/ 

7: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673338/ 

8: https://pubmed.ncbi.nlm.nih.gov/25701796/ 

9: https://pubmed.ncbi.nlm.nih.gov/24514153/ 

10: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548479/ 

11: https://www.cnet.com/news/scientists-connected-3-actual-human-brains-then-made-them-play-tetris/ 


---- Lesson 2 ----


12: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200162/ 

13: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427816/ 

14: https://doi.org/10.1038/36023 

15: https://core.ac.uk/download/pdf/144005709.pdf 

16: https://www.jneuro.com/neurology-neuroscience/the-ancient-greek-discovery-of-the-nervous-systemalcmaeon-praxagoras-and-herophilus.php?aid=6917 

17: https://web.stanford.edu/class/history13/earlysciencelab/body/brainpages/brain.html

18: https://earlyradiohistory.us/sec013.htm

19: https://www.thoughtco.com/who-invented-bluetooth-4038864

20: https://www.sciencedirect.com/science/article/pii/S0006899315006897

21: https://www.thoughtco.com/history-of-computers-4082769

22: https://patents.google.com/patent/US2892931A/en 

23: https://jamanetwork.com/journals/jamaotolaryngology/fullarticle/1688121

24: https://www.sciencedirect.com/science/article/pii/S0006899315006897

25: https://www.cell.com/current-biology/fulltext/S0960-9822(15)00208-0

26: https://www.britannica.com/biography/David-Hunter-Hubel

27: https://www.invent.org/inductees/robert-e-kahn

28: https://patents.google.com/patent/US6176962B1/

29: https://doi.org/10.1007/978-3-642-41136-6_3

30: https://link.springer.com/chapter/10.1007/978-3-319-45378-1_1

31: https://europepmc.org/article/PMC/3956958

32: http://dx.doi.org/10.1016/j.mattod.2015.11.005

33: https://www.fda.gov/about-fda/history-fdas-fight-consumer-protection-and-public-health

34: https://history.nih.gov/display/history/Nuremburg+Code

35: https://www.who.int/bulletin/volumes/86/8/08-050955/en/

36: https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/index.html

37: https://www.rt.com/usa/hacker-pacemaker-barnaby-jack-639/

38: https://venturebeat.com/wp-content/uploads/2008/08/icd-study.pdf

39: https://cybermedrxdotcom.files.wordpress.com/2016/01/fda_cdrhcybersecurity_cybermedrxsummit_12-4-15_final.pdf

40: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/implanted-brain-computer-interface-bci-devices-patients-paralysis-or-amputation-non-clinical-testing

41: https://www.fda.gov/science-research/about-science-research-fda/how-simulation-can-transform-regulatory-pathways

42: http://www.imdrf.org/meetings/meetings.asp

43: https://www.whitehouse.gov/briefing-room/statements-releases/2021/01/20/letter-his-excellency-antonio-guterres/

44: http://scihi.org/luigi-galvani/

45: https://www.karger.com/Article/Abstract/117338

46: https://sapienlabs.org/the-remarkable-inconsistency-of-frequency-band-definitions/

47: https://www.frontiersin.org/articles/10.3389/fnhum.2018.00521/full

48: https://sapienlabs.org/brain-waves-sine-waves/

49: https://specialtycareus.com/history-of-ionm/

50: https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(18)30237-0/fulltext

51: https://ieeexplore.ieee.org/document/6648841

52: https://archive.org/details/creatingmodernne0000shep

53: https://academic.oup.com/brain/article/119/2/507/382434 

54: https://pubmed.ncbi.nlm.nih.gov/14624244/

55: https://www.cnet.com/news/elon-musk-neuralink-works-monkeys-human-test-brain-computer-interface-in-2020/

56: https://braininitiative.nih.gov/

57: https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative-20-cells-circuits-toward-cures

58: https://www.darpa.mil/our-research


---- Lesson 3 ----


None


---- Lesson 4 ----

59: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5201130/#:~:text=Axons%20within%20the%20spinal%20tract,%CE%BCm%20in%20diameter%20(4)

60: https://www.toppr.com/ask/content/story/amp/types-of-neurons-on-the-basis-of-no-of-processes-70522/ 

61: https://www.physiologyweb.com/lecture_notes/resting_membrane_potential/resting_membrane_potential_nernst_equilibrium_potential.html 

62: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560575/#:~:text=From%20experiments%20blocking%20the%20sodium,across%20grey%20and%20white%20matter

63: https://www.youtube.com/watch?v=oa6rvUJlg7o

64: https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Gap_cell_junction-en.svg/375px-Gap_cell_junction-en.svg.png

65: https://www.kenhub.com/en/library/anatomy/neurotransmitters

66: https://biologydictionary.net/glial-cells/ 

67: https://med.libretexts.org/Bookshelves/Pharmacology_and_Neuroscience/Book%3A_Computational_Cognitive_Neuroscience_(O%27Reilly_and_Munakata)/05%3A_Brain_Areas/5.03%3A_Preception_and_Attention-_What_vs._Where

68: http://learn.neurotechedu.com/oscillations/ 


---- Lesson 5 ----


69: https://www.frontiersin.org/articles/10.3389/fneng.2014.00024/full

70: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527370/

71: https://www.frontiersin.org/articles/10.3389/fnins.2016.00286/full#B20

72: https://rc.library.uta.edu/uta-ir/bitstream/handle/10106/1043/umi-uta-2148.pdf?sequence=1&isAllowed=y

73: https://www.frontiersin.org/articles/10.3389/fnins.2016.00286/full#B20

74: https://pubmed.ncbi.nlm.nih.gov/32540296/

75: https://pubmed.ncbi.nlm.nih.gov/28833931/

76: https://neuronwbs.com/spinal-cord-stimulation-paddle-lead/

77: https://stimwavefreedom.com/freedom-spinal-cord-stimulation/

78: https://link.springer.com/article/10.1186/s12984-017-0285-3

79: https://www.sciencedirect.com/science/article/pii/S0165027019302717

80: https://doi.org/10.1088/1741-2552/abc025

81: https://www.frontiersin.org/articles/10.3389/fnins.2018.00350/full

82: https://iopscience.iop.org/article/10.1088/1741-2552/abcdbe/meta

83: https://jamanetwork.com/journals/jamasurgery/article-abstract/2681165

84: https://pubmed.ncbi.nlm.nih.gov/31461024/

85: https://www.hindawi.com/journals/bmri/2016/5726730/

86: https://pubmed.ncbi.nlm.nih.gov/32176203/

87: https://www.jhuapl.edu/Prosthetics/ResearchTMR

88: https://www.sralab.org/research/labs/regenstein-foundation-center-bionic-medicine/projects/targeted-muscle-reinnervation

89: https://www.sciencedirect.com/science/article/pii/S016502702030056X

90: https://www-sciencedirect-com.ezproxy.rit.edu/science/article/pii/S0165027020300248

91: https://www.frontiersin.org/articles/10.3389/fnins.2016.00557/full

92: https://www.media.mit.edu/projects/agonist-antagonist-myoneural-interface-ami/overview/

93: https://www.frontiersin.org/articles/10.3389/fnsys.2014.00226/full

94: http://depts.washington.edu/moritlab/wordpress/wp-content/uploads/2013/06/Ereifej-et-al-JNE-perpective-2019.pdf

95: https://ieeexplore.ieee.org/abstract/document/4664429

96: https://www.tandfonline.com/doi/pdf/10.1080/00029238.1963.11080602

97: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548479/

98: https://www.neurodevelopmentcenter.com/neurofeedback-2/qeeg/

99: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333694/

100: https://link-springer-com.ezproxy.rit.edu/article/10.1007/BF02351037

101: https://search-proquest-com.ezproxy.rit.edu/docview/201472039?pq-origsite=summon

102: https://pubmed.ncbi.nlm.nih.gov/20206581/

103: https://www.sciencedirect.com/science/article/abs/pii/S1935861X15009468

104: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886641/

105: https://journals.physiology.org/doi/full/10.1152/jn.00387.2013

106: https://headachemigraine.org/eneura-bankruptcy-what-does-this-mean-for-patients/

107: https://www.brainstimjrnl.com/article/S1935-861X(20)30013-9/fulltext#secsectitle0015

108: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K161663

109: https://bestfoot4wardblog.com/2020/01/21/ncs-vs-emg-whats-needed-for-a-cmt-diagnosis/

110: https://doi.org/10.1016/j.conb.2018.04.011

111: https://www.brighamhealthonamission.org/2018/12/11/focused-ultrasound-noninvasive-surgery-stops-tremor-in-its-tracks/

112: https://www.mayoclinic.org/tests-procedures/pet-scan/about/pac-20385078

113: http://dx.doi.org/10.1016/j.mattod.2015.11.005

114: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449725/

115: https://www.theverge.com/2019/7/16/20697123/elon-musk-neuralink-brain-reading-thread-robot

116: https://www.techbrackets.com/elon-musk-neuralink-merge-human-brain-ai/

117: http://doi.org/10.3390/ma12193166

118: https://www.frontiersin.org/articles/10.3389/fbioe.2020.622923/full


---- Lesson 6 ----

119: https://www.neuromodulation.com/about-neuromodulation 

120: https://www.neuromodulation.com/treatment 

121: https://www.neuromodulation.com/conditions

122: https://www.neuromodulation.com/spinal-cord-stimulation 

123: https://www.neuromodulation.com/cochlear-implant 

124: https://www.neuromodulation.com/deep-brain-stimulation

125: https://www.youtube.com/watch?v=DVvmgjBL74w

126: https://www.bbc.com/news/technology-50347421

127: https://www.addictioncenter.com/news/2020/01/chip-brain-opioid-addiction/

128: https://abbott.mediaroom.com/2017-01-20-New-Study-Demonstrates-Spinal-Cord-Stimulation-Can-Reduce-or-Stabilize-Opioid-Use-Among-Chronic-Pain-Patients

129: https://www.hhs.gov/sites/default/files/pmtf-final-report-2019-05-23.pdf

130: https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00276/full

131: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787513/

132: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947672/

133: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/nerve-conduction-studies

134: https://pubmed.ncbi.nlm.nih.gov/21646303/

135: https://www.neuromodulation.abbott/us/en/products/dbs-therapy-movement-disorders/st-jude-medical-infinity-dbs-system.html#:~:text=The%20St.,never%20needs%20to%20be%20recharged.

136: https://www.frontiersin.org/articles/10.3389/fnhum.2021.667035/full

137: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Deep-Brain-Stimulation-Movement-Disorders-Fact

138: https://www.thelancet.com/journals/laneur/article/PIIS147444220870190X/fulltext

139: https://pubmed.ncbi.lm.nih.gov/12436085/

140: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102895/

141: https://www.hopkinsmedicine.org/psychiatry/specialty_areas/brain_stimulation/tms/faq_tms.html

142: https://pubmed.ncbi.nlm.nih.gov/19833552/

143: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290124/

144: https://www.frontiersin.org/articles/10.3389/fnsys.2014.00002/full

145: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034391/

146: https://academic.oup.com/ijnp/article/14/8/1133/697681

147: https://soterixmedical.com/research/1x1/tdcs

148: https://www.jalimedical.com/tdcs.php

149: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034380/

150: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378793/ 

151: http://ncbi.nlm.nih.gov/pmc/articles/PMC5378793/

152: http://www.tmslab.org/tms%20articles%20connectivity/002.pdf

153: https://nyulangone.org/conditions/depression-in-adults/treatments/deep-brain-stimulation-for-depression-in-adults

154: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353067/

155: https://clinicaltrials.gov/ct2/show/NCT04507243

156: https://onlinelibrary.wiley.com/doi/full/10.1002/jnr.24594

157: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357647/

158: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413475/

159: https://www.moussawi.pitt.edu/

160: https://clinicaltrials.gov/ct2/show/NCT03969251

161: https://www.studentdoctor.net/2018/01/30/chronic-pain-opioid-epidemic-neuromodulation/

162: https://www.hhs.gov/sites/default/files/opioid%20PHE%20Declaration-no-sig.pdf

163: https://www.gao.gov/products/gao-18-685r#:~:text=Partly%20due%20to%20this%2C%20HHS%20declared%20the%20opioid,certain%20activities%20in%20response%20to%20the%20opioid%20crisis.

164: https://www.hhs.gov/opioids/sites/default/files/2018-09/opioid-fivepoint-strategy-20180917-508compliant.pdf

165: https://academic.oup.com/painmedicine/article/7/suppl_1/S7/1819491

166: https://doi.org/10.1016/B978-0-12-373932-2.00152-6

167: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P010032

168: http://news.neurotech.com/reports/Neurotech-Landscape-Overview-Report.pdf 

169: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303786/

170: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303787/

171: https://sci.washington.edu/info/forums/reports/urinary_problems.asp#best

172: https://www.sciencedirect.com/science/article/pii/S0020138316307586?via%3Dihub

173: https://academic.oup.com/psychsocgerontology/article/60/5/S263/585493

174: https://dredf.org/health-disparities-at-the-intersection-of-disability-and-gender-identity/#:~:text=First%2C%20transgender%20people%20with%20disabilities%20are%20more%20likely,compared%20to%2030%25%20of%20transgender%20respondents%20without%20disabilities.

175: https://doi.org/10.1007/s40615-016-0220-5 

176: https://www.liebertpub.com/doi/full/10.1089/neu.2012.2540 

177: https://academic.oup.com/gerontologist/article/54/3/473/716739

178: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540621/

179: https://www.limbsinternational.org/why-limbs.html

180: https://futurism.com/mind-controlled-robotic-arm-johnny-matheny

181: https://www.census.gov/library/publications/2020/demo/p60-270.html

182: https://www.tandfonline.com/doi/full/10.1080/09687599.2016.1235308

183: https://u.osu.edu/ohiostateapi/

184: https://enablingthefuture.org/about/

185: https://www.limbsinternational.org/

186: https://www.webmd.com/urinary-incontinence-oab/overactive-bladder-electrical-stimulation#:~:text=Your%20doctor%20inserts%20a%20thin%20needle%20under%20the,nerves%20in%20your%20spine%20that%20control%20your%20bladder.

187: https://www.jhuapl.edu/PressRelease/191016

188: https://spectrum.ieee.org/biomedical/bionics/creating-a-prosthetic-hand-that-can-feel

189: https://journalofethics.ama-assn.org/article/new-era-neuromodulation/2015-01

190: https://www.press.jhu.edu/news/blog/how-many-senses-do-we-have

191: https://pubmed.ncbi.nlm.nih.gov/23648598/

192: https://www.nidcd.nih.gov/health/cochlear-implants

193: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/cochlear-implant-surgery#:~:text=A%20cochlear%20implant%20is%20a,internal%20part%20of%20the%20implant.

194: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199932/

195: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606248/

196: https://pubs.asha.org/doi/10.1044/1092-4388%282005/015%29

197: https://www.sciencedirect.com/science/article/pii/S209588111730149X

198: https://wunderlife.wordpress.com/about/

199: https://secondsight.com/#

200: https://medlineplus.gov/ency/article/001029.htm#:~:text=Possible%20Complications&text=Peripheral%20and%20central%20loss%20of,they%20contribute%20to%20vision%20loss.

201: https://www.accessdata.fda.gov/cdrh_docs/pdf11/H110002B.pdf

202: https://www.nsf.gov/news/news_summ.jsp?cntn_id=126756

203: https://clinicaltrials.gov/ct2/show/NCT03392324?term=NCT03392324&rank=1

204: https://www.sciencedirect.com/science/article/pii/S0042698909000467#:~:text=A%20phosphene%20is%20%E2%80%9Cany%20visual,phosphenes%20elicited%20by%20electric%20stimulation.

205: https://www.sensoryrestorationtechnologies.com/ 

206: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863566/

207: https://link.springer.com/article/10.1007/s11940-020-00641-5

208: https://www.bmj.com/content/370/bmj.m2808

209: https://www.cdc.gov/coronavirus/2019-ncov/faq.html#:~:text=COVID%2D19%20is%20a,post%2DCOVID%20conditions.

210: https://patents.google.com/patent/US20170087363A1/en

211: https://journals.sagepub.com/doi/pdf/10.1177/1071181319631508

212: https://www.hss.edu/newsroom_prosthetic-leg-cost-over-lifetime.asp#:~:text=The%20price%20of%20a%20new,not%20a%20one%2Dtime%20cost.

213: https://engineering.case.edu/ebme/tyler/research

214: https://youtu.be/MmAL7B6lQiU

215: https://mirm-pitt.net/news-archive/in-a-first-pitt-upmc-team-help-paralyzed-man-feel-again-through-a-mind-controlled-robotic-arm/

216: https://www.wicab.com/

217: https://youtu.be/CNR2gLKnd0g

218: https://hkust.edu.hk/news/research-and-innovation/hkust-scientists-develop-worlds-first-spherical-artificial-eye-3d

219: https://www.nature.com/articles/srep01319

220: https://youtu.be/RuUSc53Xpeg

221: https://www.ted.com/talks/arnav_kapur_how_ai_could_become_an_extension_of_your_mind

222: https://www.media.mit.edu/projects/alterego/overview/

223: https://www.goodreads.com/book/show/13642710-nexus

224: https://www.darpa.mil/program/next-generation-nonsurgical-neurotechnology


---- Lesson 7 ----


225: https://betterhealthwhileaging.net/what-are-adls-and-iadls/ 

226: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497935/#:~:text=A%20BCI%20system%20consists%20of,and%20(4)%20device%20output.

227: https://www.mdpi.com/1424-8220/12/2/1211/htm

228: https://journals.sagepub.com/doi/full/10.26599/BSA.2018.9050010

229: https://www.sciencedirect.com/science/article/abs/pii/S1746809420304626?dgcid=rss_sd_all

230: https://www.frontiersin.org/articles/10.3389/fnhum.2017.00274/full

231: https://doi.org/10.3390/electronics10050560

232: https://pubmed.ncbi.nlm.nih.gov/20822389/

233: https://charlesfrye.github.io/FoundationalNeuroscience//49/#:~:text=Heights%20represent%20spike%20counts%20

234: https://www.cs.cmu.edu/afs/cs/academic/class/15883-f13/readings/sanger-1994.pdf

235: https://www.researchgate.net/profile/Prashant-Kumar-17/publication/275837213_On-line_Monitoring_of_Water_Quality_Index_Using_LabVIEW-A_Review/links/55485d5b0cf26a7bf4dabdd3/On-line-Monitoring-of-Water-Quality-Index-Using-LabVIEW-A-Review.pdf#page=217

236: https://biomech.media.mit.edu/about/

237: https://link.springer.com/article/10.1007/s10015-016-0336-z?utm_medium=affiliate&utm_source=commission_junction&utm_campaign=3_nsn6445_brand_PID100357191&utm_content=de_textlink

238: https://www.nature.com/articles/s41598-018-29091-5

239: https://www.youtube.com/watch?v=CR_LBcZg_84

240: https://youtu.be/rsCul1sp4hQ

241: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/sensory-evoked-potentials-studies

242: https://sccn.ucsd.edu/~yijun/pdfs/TST11.pdf

243: https://ieeexplore.ieee.org/abstract/document/9216847

244: https://www.nature.com/articles/s41598-018-24008-8

245: https://journals.sagepub.com/doi/full/10.1177/1545968310382425

246: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398470/

247: https://ncbi.nlm.nih.gov/pmc/articles/PMC3016705/

248: https://youtu.be/WTTTwvjCa5g

249: https://youtu.be/WFzvhZ1qhRg?list=PLEE126B89B74189AF

250: https://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf

251: https://dsp.stackexchange.com/questions/24780/power-spectral-density-vs-fft-bin-magnitude

252: https://ieeexplore.ieee.org/document/7755114

253: https://pubmed.ncbi.nlm.nih.gov/30001069/

254: https://link.springer.com/chapter/10.1007/978-3-642-24955-6_86

255: https://www.sciencedirect.com/science/article/pii/S0010482519300563?via%3Dihub

256: https://pubmed.ncbi.nlm.nih.gov/16823294/

257: https://youtu.be/9NOncx2jU0Q 

258: https://www.nature.com/articles/nature11076

259: https://abcnews.go.com/Health/w_MindBodyNews/paralyzed-woman-moves-robotic-arm-mind/story?id=16353993

260: http://news.brown.edu/articles/2012/05/braingate2

261: https://www.darpa.mil/program/revolutionizing-prosthetics

262: https://triblive.com/local/regional/fayette-mans-rapid-control-of-robotic-arm-at-pitt-lab-detailed-in-science/

263: https://www.darpa.mil/news-events/2016-10-13

264: https://stm.sciencemag.org/content/8/361/361ra141

265: https://openbionics.com/

266: https://www.lockheedmartin.com/en-us/products/exoskeleton-technologies/military.html#:~:text=Lockheed%20Martin's%20new%20powered%20lower,while%20carrying%20mission%2Dessential%20equipment 

267: https://www.netflix.com/title/81021929

268: https://biomech.media.mit.edu/portfolio_page/load-bearing-exoskeleton-for-walking/

269: https://www.eurekalert.org/pub_releases/2019-05/aasd-bnm051119.php

270: https://www.nbcnews.com/storyline/world-cup/we-did-it-brain-controlled-iron-man-suit-kicks-world-n129941

271: https://ieeexplore.ieee.org/document/8724794

272: https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-019-0607-8

273: https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-020-00801-3

274: https://nature.com/articles/s41598-019-44645-x

275: https://www.frontiersin.org/articles/10.3389/fnhum.2012.00278/full

276: https://www.sciencedirect.com/science/article/abs/pii/S0893608009001579

277: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441123/

278: https://papers.neurips.cc/paper/2008/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf

279: https://www.nicolelislab.net/?p=492

280: https://www.frontiersin.org/articles/10.3389/fnhum.2019.00401/full 

281: https://puzzlebox.io/orbit/

282: https://www.nature.com/articles/srep01319

283: https://www.nature.com/articles/srep10767

284: https://www.imdb.com/title/tt2379308/

285: https://www.sciencedirect.com/science/article/pii/S0079612319301323

286: https://iopscience.iop.org/article/10.1088/1741-2552/ab260c/pdf

287: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855894/

288: https://bojinov.org/pdfs/usenixsec2012-rubberhose.pdf

289: https://thejns.org/focus/view/journals/neurosurg-focus/27/1/article-pE7.xml

290: https://neurosecurity.byu.edu/#citation_one

291: https://www.apa.org/research/action/polygraph

292: https://psycnet.apa.org/record/1992-15593-001

293: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996245/

294: https://www.brainpainting.net/140-history.php

295: https://www.3dnatives.com/en/pangolin-3d-printed-dress-310820205/

296: https://www.gtec.at/spring-school-2021/


---- Lesson 8 ----

297: https://tvtropes.org/pmwiki/pmwiki.php/Main/BrainComputerInterface

298: https://www.americanbar.org/groups/intellectual_property_law/publications/landslide/2016-17/july-august/what-every-company-should-know-about-ip-rights-when-selling-us-government/

299: https://scholarship.law.upenn.edu/cgi/viewcontent.cgi?article=1548&context=penn_law_review 

300: https://www.ted.com/talks/hugh_herr_how_we_ll_become_cyborgs_and_extend_human_potential?language=en#t-825816

301: https://www.ted.com/talks/hugh_herr_how_we_ll_become_cyborgs_and_extend_human_potential?language=en#t-825816

302: https://www.youtube.com/watch?v=075lJjJDonA

303: https://youtu.be/MmAL7B6lQiU

304: https://youtu.be/9NOncx2jU0Q

305: https://www.scmp.com/news/world/united-states-canada/article/3134329/brain-controlled-robotic-arm-gives-paralysed-man

306: https://www.healthaffairs.org/do/10.1377/hblog20200501.798711/full/

307: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01151-X/fulltext

308: https://braininitiative.nih.gov/

309: https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative%C2%AE-20-cells-circuits-toward-cures

310: https://www.darpa.mil/our-research

311: https://www.marketwatch.com/story/facebook-to-buy-startup-that-lets-humans-control-computers-with-their-brains-2019-09-23

312: https://www.facebook.com/plugins/post.php?href=https%3A%2F%2Fwww.facebook.com%2Fboz%2Fposts%2F10109385805377581&show_text=true&width=500

313: https://www.facebook.com/zuck/videos/vb.4/10103661167577621/?type=2&theater

314: https://tech.fb.com/imagining-a-new-interface-hands-free-communication-without-saying-a-word/

315: https://www.forbes.com/sites/gusalexiou/2020/09/08/could-elon-musks-neuralink-be-a-game-changer-for-people-with-disabilities/

316: https://www.blackrockmicro.com/electrode-types/utah-array/

317: https://www.michaeljfox.org/news/currently-available-deep-brain-stimulation-devices